

8 Ways to use the features of your database

www.thoughts-on-java.org

1. Read-only Views
Views are another database feature you can easily use with
Hibernate. You can map a view in the same way as any database
table. As long as you follow the default naming strategy, you just need
a class with an @Entity annotation and an attribute for each database
column.

You can map read-only view in the same way. You just need an
additional annotation to tell Hibernate that it should ignore the
entity for all write operations. You can do that with Hibernate’s
@Immutable annotation.

2. Call Database Functions
Calling a database function to perform simple operations, like
counting the number of characters in a String, is a standard feature
in SQL. You can do the same with JPA and Hibernate.

Call a standard function
JPA and Hibernate support the following set of standard functions
which you can use in a JPQL query. The Criteria API supports the
same functions and provides one or more methods for each of them.

Function Description
upper(String s) Transforms String s to upper

case
lower(String s) Transforms String s to lower

case
current_date() Returns the current date of the

database
current_time() Returns the current time of the

database

@Entity

@Immutable

public class BookView { … }

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpql/

8 Ways to use the features of your database

www.thoughts-on-java.org

Function Description
current_timestamp() Returns a timestamp of the

current date and time of the
database

substring(String s, int offset,
 int length)

Returns a substring of the given
String s

trim(String s) Removes leading and trailing
whitespaces from the given
String s

length(String s) Returns the length of the given
String s

locate(String search, String s,
 int offset)

Returns the position of the
String search in s. The search
starts at the position offset

abs(Numeric n) Returns the absolute value of the
given number

sqrt(Numeric n) Returns the square root of the
given number

mod(Numeric dividend,
 Numeric divisor)

Returns the remainder of a
division

You can use these functions in the SELECT and WHERE clause of
your query. You can see a simple example in the following code
snippet.

Call an unsupported function
Most databases support a lot more functions than the ones directly
supported by Hibernate or JPA. But don’t worry, you can call them
anyways.

Since JPA 2.1, you can use the function function to call any function
supported by your database. You just need to provide the name of
the database function as the first parameter followed by the
arguments you want to provide to the function call.

Query q = em.createQuery(“SELECT a, size(a.books) “

+ “FROM Author a GROUP BY a.id”);

http://www.thoughts-on-java.org/

8 Ways to use the features of your database

www.thoughts-on-java.org

I use the function function in the following code snippet, to call the
user-defined function calculate with the price of the book and a bind
parameter as arguments.

Hibernate uses the parameters provided to the function function to
call the calculate function in the SQL statement. If you want to learn
more about JPA’s and Hibernate’s support for custom database
function calls, take a look at How to call custom database functions
with JPA and Hibernate.

3. Stored Procedures
Stored procedures provide another option to perform logic within
your database. That can be beneficial, if you need to share logic
between multiple applications that use the same database or if you’re
looking for the most efficient way to implement data-heavy
operations.

As you can see in the following code snippets, the annotation-based
definition of a stored procedure call isn’t complicated. In the first
step, you define the stored procedure call with a
@NamedStoredProcedure annotation by providing the name of the
stored procedure and its input and output parameters.

TypedQuery<Book> q = em.createQuery(

"SELECT b FROM Book b WHERE :double2 > "

"function('calculate', b.price, :double1)"

, Book.class);

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/database-functions/
http://www.thoughts-on-java.org/database-functions/

8 Ways to use the features of your database

www.thoughts-on-java.org

You can then use the @NamedStoredProcedureQuery in a similar
way as you call a named query. You just have to call the
createNamedStoredProcedureQuery method of the EntityManager
with the name of your @NamedStoredProcedureQuery to instantiate
it. Then you can set the input parameters, execute the query and
read the output parameter.

@NamedStoredProcedureQuery(

 name = "calculate",

 procedureName = "calculate",

 parameters = {

 @StoredProcedureParameter(

mode = ParameterMode.IN,

type = Double.class, name = "x"),

 @StoredProcedureParameter(

mode = ParameterMode.IN,

type = Double.class, name = "y"),

 @StoredProcedureParameter(

mode = ParameterMode.OUT,

type = Double.class, name = "sum")

 }

)

http://www.thoughts-on-java.org/

8 Ways to use the features of your database

www.thoughts-on-java.org

4. Database columns with generated values
Another often used feature of relational databases are triggers that
initialize or update certain database columns. You can use them, for
example, to automatically persist the timestamp of the last update.
While you could also do that with Hibernate, most database
administrators prefer to handle that on a database level.

But this approach has a drawback. Hibernate has to perform an
additional query to retrieve the generated values from the database.
That slows down your application and Hibernate doesn’t execute the
extra query by default.

You need to annotate the attributes that map a database column with
a generated value with Hibernate’s @Generated(GenerationTime
value) annotation. The GenerationTime annotation tells Hibernate
when it has to check for a new value. It can either do that NEVER,
after each INSERT or after each INSERT and UPDATE
(GenerationTime.ALWAYS) operation.

The following code snippet shows an example of such a mapping and
of the SQL statements Hibernate has to perform.

StoredProcedureQuery query = this.em

.createNamedStoredProcedureQuery("calculate");

query.setParameter("x", 1.23d);

query.setParameter("y", 4.56d);

query.execute();

Double sum =

(Double) query.getOutputParameterValue("sum");

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/persist-creation-update-timestamps-hibernate/

8 Ways to use the features of your database

www.thoughts-on-java.org

5. Map SQL expressions
Your domain and table model don’t need to be identical. You can also
map the result of an SQL expression to a read-only attribute of your
domain model.

You can do that with Hibernate’s @Formula annotation. It allows you
to specify an SQL expression which Hibernate executes when it reads
the entity from the database.

I use it in the following example to calculate the age of an Author
based on her date of birth.

@Entity

public class Author {

 @Column

 @Generated(GenerationTime.ALWAYS)

 private LocalDateTime lastUpdate;

 …

}

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/hibernate-tips-calculate-entity-attributes-formula/

8 Ways to use the features of your database

www.thoughts-on-java.org

6. Sequences
Database sequences are often used to generate unique primary key
values. Hibernate and JPA support different options to generate
primary key values and database sequences are, of course, one of
them.

If you want to use Hibernate’s default sequence, you just need to
annotate your primary key attribute with @GeneratedValue and set
the strategy to GenerationType.SEQUENCE.

You can also use a custom database sequence when you add a
@SequenceGenerator annotation. It allows you to define the name

@Entity

public class Author {

 @Column

 private LocalDate dateOfBirth;

 @Formula(value = “date_part(‘year’, age(dateOfBirth))”)

 private int age;

 …

}

@Id

@GeneratedValue(strategy = GenerationType.SEQUENCE)

@Column(name = "id", updatable = false, nullable = false)

private Long id;

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/

8 Ways to use the features of your database

www.thoughts-on-java.org

and database schema of your sequence and the allocation size
Hibernate shall use to retrieve primary key values.

7. Autoincremented Database Columns
Autoincremented columns provide another option to generate
unique primary key values. The database automatically increments
the value of this column for each new record.

The mapping of such a column is similar to the one I showed in the
previous example. You just need to tell Hibernate to use a different
strategy to generate the primary key values. The
GenerationType.IDENTIFIER tells Hibernate that the database
provides the primary key value.

@Id

@GeneratedValue(strategy = GenerationType.SEQUENCE,

generator = "book_generator")

@SequenceGenerator(name="book_generator",

sequenceName = "book_seq", allocationSize=50)

@Column(name = "id", updatable = false, nullable = false)

private Long id;

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

@Column(name = "id", updatable = false, nullable = false)

private Long id;

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/
http://www.thoughts-on-java.org/jpa-generate-primary-keys/

8 Ways to use the features of your database

www.thoughts-on-java.org

8. Custom and Database-Specific Datatypes
Most databases support a set of custom data types, like PostgreSQL’s
JSONB. JPA and Hibernate don’t support them. But that doesn’t mean
that you can’t use them. You just have to implement the mapping
yourself.

With Hibernate’s UserType interface, that is not as complicated as it
sounds. Let’s have a quick look at the most important steps. If you
want to dive deeper into this topic, please take a look at my post How
to use PostgreSQL’s JSONB data type with Hibernate.

Hibernate’s UserType interface allows you to define the mapping
between any Java type and any supported JDBC data type. That
requires the implementation of several methods. The 2 most
important ones are nullSafeGet and nullSafeSet. They implement the
mapping from the JDBC to the Java type and vice versa.

The following code snippet shows the implementation of these
methods for a UserType which maps a Java class to a JSONB database
column.

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/persist-postgresqls-jsonb-data-type-hibernate/
http://www.thoughts-on-java.org/persist-postgresqls-jsonb-data-type-hibernate/

8 Ways to use the features of your database

www.thoughts-on-java.org

@Override

public Object nullSafeGet(final ResultSet rs,

final String[] names, final SessionImplementor session,

final Object owner)

throws HibernateException, SQLException {

final String cellContent = rs.getString(names[0]);

if (cellContent == null) {

return null;

}

try {

final ObjectMapper mapper = new ObjectMapper();

return mapper.readValue(

cellContent.getBytes("UTF-8"),

returnedClass());

} catch (final Exception ex) {

throw new RuntimeException(

"Failed to convert String to Invoice: " +

ex.getMessage(), ex);

}

}

@Override

public void nullSafeSet(final PreparedStatement ps, final

Object value, final int idx,

 final SessionImplementor session) throws

HibernateException, SQLException {

 if (value == null) {

 ps.setNull(idx, Types.OTHER);

http://www.thoughts-on-java.org/

8 Ways to use the features of your database

www.thoughts-on-java.org

After you implemented your own UserType, you need to register it.
You can do that with a @TypeDef annotation which you should add
to the package-info.java file.

@Override

public void nullSafeSet(final PreparedStatement ps,

final Object value, final int idx,

final SessionImplementor session)

throws HibernateException, SQLException {

if (value == null) {

ps.setNull(idx, Types.OTHER);

return;

}

try {

final ObjectMapper mapper = new ObjectMapper();

final StringWriter w = new StringWriter();

mapper.writeValue(w, value);

w.flush();

ps.setObject(idx, w.toString(), Types.OTHER);

} catch (final Exception ex) {

throw new RuntimeException(

"Failed to convert Invoice to String: " +

ex.getMessage(), ex);

}

}

http://www.thoughts-on-java.org/

8 Ways to use the features of your database

www.thoughts-on-java.org

If the Hibernate dialect doesn’t already support the column type, as
it’s the case for the JSONB type, you also need to extend the dialect.
As you can see in the following code snippet, this requires only a few
lines of code.

@org.hibernate.annotations.TypeDef(name = "MyJsonType",

typeClass = MyJsonType.class)

package org.thoughts.on.java.model;

public class MyPostgreSQL94Dialect extends

PostgreSQL94Dialect {

 public MyPostgreSQL94Dialect() {

 this.registerColumnType(Types.JAVA_OBJECT,

"jsonb");

 }

}

http://www.thoughts-on-java.org/

